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Abstract

For many years, head and neck squamous cell carcinoma (HNSCC) has been considered as a single entity. However,
in the last decades HNSCC complexity and heterogeneity have been recognized. In parallel, high-throughput omics
techniques had allowed picturing a larger spectrum of the behavior and characteristics of molecules in cancer and
a large set of omics web-based tools and informative repository databases have been developed. The objective of
the present review is to provide an overview on biological, prognostic and predictive molecular signatures in HNSCC.
To contextualize the selected data, our literature survey includes a short summary of the main characteristics of omics
data repositories and web-tools for data analyses. The timeframe of our analysis was fixed, encompassing papers
published between January 2015 and January 2019. From more than 1000 papers evaluated, 61 omics studies were
selected: 33 investigating mRNA signatures, 11 and 13 related to miRNA and other non-coding-RNA signatures and 4
analyzing DNA methylation signatures. More than half of identified signatures (36) had a prognostic value but only in
10 studies selection of a specific anatomical sub-site (8 oral cavity, 1 oropharynx and 1 both oral cavity and oropharynx)
was performed. Noteworthy, although the sample size included in many studies was limited, about one-half of the
retrieved studies reported an external validation on independent dataset(s), strengthening the relevance of the
obtained data. Finally, we highlighted the development and exploitation of three gene-expression signatures, whose
clinical impact on prognosis/prediction of treatment response could be high. Based on this overview on omics-related
literature in HNSCC, we identified some limits and strengths. The major limits are represented by the low number of
signatures associated to DNA methylation and to non-coding RNA (miRNA, lncRNA and piRNAs) and the availability of
a single dataset with multiple omics on more than 500 HNSCC (i.e. TCGA). The major strengths rely on the integration
of multiple datasets through meta-analysis approaches and on the growing integration among omics data obtained on
the same cohort of patients. Moreover, new approaches based on artificial intelligence and informatic analyses are
expected to be available in the next future.
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Background
Head and neck squamous cell carcinoma (HNSCC) is
the seventh most frequent cancer, with a worldwide
incidence of 0.7 million new cases per year, and a low 5-
year survival rate for both localized and advanced dis-
ease (69 and 34%, respectively) [1]. For several years,

HNSCC has been considered as a single entity, since all
sub-sites (i.e. oral cavity, oropharynx, larynx, hypophar-
ynx) share a common epithelial precursor. Based on this
assumption, treatment and biological analyses were
mostly applied with no distinction for each of the sub-
sites. However, clinical-pathological features and mo-
lecular changes, driving carcinogenesis [2], have helped
in recognizing HNSCC complexity and heterogeneity. In
addition, The Human Genome Project in 2003 [3] and
following developments of next-generation sequencing
(NGS) technologies have generated a cascade of high-
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throughput methodologies, altogether named omics.
Omics have substantially led biology understanding to a
deeper level for several cancer types, including HNSCC.
In the present paper, we reviewed the main omics meth-
odologies and the available resources for retrieving and
analyzing omics data. Additionally, we updated our
previous work [4] with the most recent published data
in the context of HNSCC Transcriptomics and Epige-
nomics, considering these reviews as a continuum. The
objective of the present work is to comprehensively
review available information on transcriptomics and epi-
genomics in HNSCC to provide an overview on bio-
logical, prognostic and predictive molecular signatures.

Main Omics methodologies
Biology is the result of the presence, expression, interaction,
and regulation of different types of molecules. For their
ability to account such a complexity, omics technologies
have grown over the last two decades and they are now
highly intertwined with other biological functional analysis
[5]. Considering the classical cellular workflow of transcrip-
tion (from DNA to mRNA) and translation (from mRNA
to protein), omics can be presented as follows: i) Genomics
has been introduced as the first high-throughput omics
technique that impacted several aspects of clinical activity.
It analyses the whole sequences of coding and non-coding
portions of the genome, and targeted sequences (such as
exome or clinical exome sequences). Genomics allows the
identification of possibly relevant variants, such as single
nucleotide polymorphisms (SNPs), copy number variation
(CNV), mutations and translocations; ii) Transcriptomics
involves all the RNA transcripts (with a particular attention
in the last decade to mRNA, and more recently to long
non-coding RNA [lncRNA]), monitor their differences in
expression and infer the impacts of their alteration; iii)
Epigenomics essentially studies DNA methylation variations
and the functional consequences of the spatial behavior of
the DNA (see also Table 1). Moreover, other cellular mole-
cules have been analyzed by high-throughput methodolo-
gies and entered in the omics sciences, such as proteins,
metabolites in general and lipids in particular (Proteomics,
Metabolomics, Lipidomics). Recently, the omics suffix was
also applied to emerging non-molecular fields: ‘radiomics’,
the high-throughput mining of quantitative image features
from clinically used medical imaging [6] and ‘metage-
nomics’, the assessment of the microbial communities
inhabitant of the human body. More details about the char-
acteristics of these other omics areas and methods are avail-
able elsewhere [7].

Available resources for retrieving and analyzing Omics data
The application of high-throughput techniques requires
high computational capacity and expertise in handling
large amounts of data. Consequently, repositories for

omics have been created worldwide (Tables 2, 3). Most of
these repositories are publicly accessible and useful for
data consulting. The ArrayExpress archive is one of the
ELIXIR Core Data Resources and stores data derived from
array- and sequence-based experiments. Researchers can
upload data if the provided content is compliant with the
Minimum Information About a Microarray Experiment
(MIAME) and the Minimum Information About a Next-
generation Sequencing Experiment (MINSEQE) standards
[8]. ArrayExpress experiment results are available as: i)
metadata information with the experiment description,
protocol procedures, sample annotations and author in-
formation; ii) raw experiment data; iii) processed data.
ArrayExpress enables access to BioSamples [9], another
ELIXIR repository, providing a store to collect metadata,
about biological samples. Gene Expression Omnibus
(GEO) is a public repository supported by the National
Cancer Center for Biotechnology Information (NCBI) and
it archives MIAME- and MINSEQE-compliant functional
genomics data of all organisms. Data derived from array-
and sequence-based analyses are available, comprising
dataset information, experiment variable subsets, expres-
sion value measurements, gene symbols and, comprehen-
sive gene annotation. Additionally, GEO offers several
functionalities for data analysis through GEO DataSet
database, such as gene search, comparison of samples sets,
inspection of cluster heat-maps, execution of experimental
design and value distribution with box plot visualization
support. Another available repository is The Cancer Gen-
ome Atlas (TCGA), which contains only human cancer
data and, for this reason, differs from the previously de-
scribed repository. TCGA was born as collaboration be-
tween the National Cancer Institute (NCI) and the
National Human Genome Research Institute (NHGRI)
and was upgraded and merged with the Pan-Cancer Atlas
[10]. Both TCGA and Pan-Cancer Atlas offer a reclassifi-
cation of human tumor types based on molecular similar-
ity, a molecular landscape of the oncogenic processes and
a comprehensive analysis of tumor signaling pathways.
Only TCGA and Pan-Cancer consortium members have
the access to submit omics data and data upload is con-
tinuously in progress. TCGA dataset system contains 25
human cancer types and it is provided free of charge. Its
exploration is supported by descriptive charts. A con-
trolled access is required for data downloading. Another
important repository is the Functional Annotation of the
Mammalian Genome (FANTOM), an international re-
search consortium that encompasses the field of transcrip-
tome analyses. The project delivered the FANTOM5
collection, a data series supporting structure of mamma-
lian transcriptome atlases in diverse cell types. FANTOM5
data contains: Cap Analysis of Gene Expression (CAGE)
and annotation tables; pathway enrichment and co-
expression cluster analysis; enhancers; results of de-novo
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and motif activity analysis; sample ontology and ontology
term enrichment; CAGE peaks identified by specific clas-
sifier and visualization tools.
In parallel, a large set of omics web-based tools and an

increasing amount of informative repository databases
have been developed (Table 3). ELIXIR [11] is an inter-
governmental organization, composed by 23 members
and over 180 research organizations among Europe. It is
a Core Data resource with several web-based bioinfor-
matics tools such as: i) Ensembl, a browser for DNA se-
quences and assemblies, provided by international
projects on vertebrate genomes that accommodates an-
notated genes, computes multiple alignments, predicts
regulatory function and collects disease data; ii) Euro-
pean Genome-phenome Archive (EGA), a web-tool, pro-
viding information from genetic and phenotypic data

coming from biomedical research projects; iii) Rfam, a
database collecting multiple sequence alignments, con-
sensus secondary structures and covariance models
(CMs) for non-coding RNA families; and iv) RNAcen-
tral, provided by collaborating groups (ENA, Ensembl,
GENCODE, miRBase), bringing integrated access to a
comprehensive and up-to-date set of non-coding RNA
sequences. Furthermore, a number of web-based tools
or software querying TCGA are available: i) The Cancer
Omics Atlas (TCOA), providing useful functions com-
plementary to other existing tools, such as querying of
gene, miRNA and protein expression, somatic mutations
(based on a single molecule or cancer type correlations
of gene–gene, miRNA–miRNA, protein–protein, gene–
miRNA and gene–protein), and their correlation with
survival prognosis in cancer patients; ii) Broad Institute,

Table 1 The main omics techniques and their characteristics: the biological material analyzed, the major methodologies applied and
the type of information achievable with them

Omics name Material analyzed Methodologies Type of information

Genomics DNA Whole-genome sequencing Complete genome sequence for identification of coding and
non-coding sequence variants

Exome sequencing or clinical
exome-sequencing

Sequencing of protein-coding regions of the genome or genes
known to be associated to a clinical phenotype

Comparative genomic
hybridization (aCGH)

Analysis of copy number alterations in the genome
(comparison with a reference genome/sample)

Epigenomics/Transcriptomics DNA/RNA Whole or targeted DNA
methylation

Identification of disfunctions in regulatory elements

Whole or targeted miRNA Sequencing or detection of differential expression of miRNA

Whole or targeted long
noncoding RNA

Sequencing or detection of differential expression of long
noncoding RNA

Whole or targeted mRNA Sequencing or detection of differential expression of coding genes

Table 2 Main public repositories and their features

SOURCE ArrayExpress GEO (Gene expression omnibus) -
NCBI (The National Center for
Biotechnology Information)

TCGA (The Cancer Genome
Atlas)

FANTOM5

Link www.ebi.ac.uk/arrayexpress www.ncbi.nlm.nih.gov/geo/
summary

portal.gdc.cancer.gov fantom.gsc.riken.jp

Repository data Public archive of Genomics/
Functional Genomics Data
all organisms, normal and
disease associated

Public archive of Functional
Genomics Data of all organisms,
normal and disease associated

Public dataset of Omics
Data of Human Cancer

International consortium
of functional annotations
of mammalian coding and
non coding portion of
genome

Submitting authors All the researchers,
following the MIAME
and MINSEQE rules

All the researchers, following
the MIAME and MINSEQE rules

Only TCGA/Pancancer
consortium members

Only FANTOM5 consortium
members

Access for
downloading

Free Free Required for downloading
controlled-access data

Free

Type of available
data

Array- and sequence-based
data. Meta-analysis not
accepted. Updated daily

Array- and sequence-based data.
Meta-analysis not accepted.
Updated daily

Omics data generated
by TCGA Consortium
and Pancancer Atlas.
Continuously in progress

Transcriptomics data. Updated
monthly

Query types See Elixir Core Data
Resource in Table 3

Download analysis (find genes,
compare 2 sets of samples,
cluster heatmaps, experiment
design and value distribution)

See tools for querying
TCGA in Table 3

Visualization tools such as ZENBU,
a system for data integration,
analysis and visualization of NGS
based data
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allowing systematic analysis on TCGA data and com-
parison with other diseases; iii) OncoLnc, analyzing
patients survival (Kaplan-Meier curves) according to
mRNA, miRNA, lncRNA expression levels; and iv)
TCGA Batch Effects Viewer [12], a tool specifically de-
signed to diagnose and correct for any batch effects in
TCGA data; v) cBioPortal [13], a software allowing gen-
omic analysis both from population or a single patient
of multiple cancer types. In addition to these two main
types of resources (i.e. ELIXIR and TCGA querying
tools), it should be mentioned: i) MiTranscriptome
[14], a catalog of human long poly-adenylated RNA
transcripts, from samples encompassing different can-
cer and tissue types; ii) KM plotter [15], a tool assessing
the effect of genes/miRNA on overall survival data for
biomarker discovery; iii) Bioconductor, an open-source
tool based on R programming language for the analysis
and comprehension of high-throughput data and enab-
ling generation of workflows for multiple data types,
data preprocessing, statistical inference, regression, net-
work analysis, machine learning, multiomics integration
and visualization. For further information about other
tools, databases and websites also see the following re-
views [16–18].

Strategy of search and selection of studies
Literature surveys of HNSCC genomics [2] and proteo-
mics [19] have already been conducted and published in
the past years. For this reason, we decided to focus on
HNSCC transcriptomics and epigenomics studies, char-
acterizing signatures related to biology, prognosis and
prediction of treatment response. The timeframe of our
analysis was fixed, encompassing papers published be-
tween January 2015 and January 2019. The purpose of
this choice was to partially overlap with a previous
review on transcriptomics data [4] and was dictated by
the evidence that both epigenomics (DNA methylation)
and transcriptomics based on non-coding RNA (miRNA,
lncRNA and piRNAs) are advancing and growing only in
recent years. A web-based search has been performed in
the following databases: Pubmed, ArrayExpress and
GEO. The combination of the following keywords has
been used: “gene expression” or “methylation” or
“miRNA” or “transcriptomics” or “sequencing” or
“microarray” AND “head and neck cancer” or “HNSCC”.
The title and the abstract of all potentially relevant stud-
ies were assessed for their contents before the retrieval
of full articles. The full text of each selected study was
carefully evaluated. Eligible studies were required to
meet the following inclusion criteria: publication which
data has been obtained using HNSCC tumor tissue; the
number of cases per each analysis had to be ≥40. More-
over, the following exclusion criteria were applied: non-
English publication; case reports, letters and reviews;

expression studies of individual preselected candidate
gene/miRNA/DNA methylation site; and data obtained
on not human samples/cell lines/different patient mate-
rials (serum, plasma, saliva). Papers that fulfilled the in-
clusion criteria were processed for data.

Analysis of recent Epigenomics and Transcriptomics data
Over more than 1000 papers have been analyzed from
which we retrieved a total of 61 omics studies fulfilling
inclusion and exclusion criteria [20–80].
The selected studies are listed in the Additional file 1:

Table S1, subdivided according to the analyzed feature,
such as mRNA, miRNA, non-coding RNAs and DNA
methylation, respectively. This subdivision was univocal
for 54 studies. Conversely, authors of 6 studies analyzed
more than one feature and it was decided to classify
them on the basis of the feature with higher relevance,
according to paper aim. Data in the supplementary ta-
bles are reported as: i) the name of the identified signa-
ture according to the authors of publication; ii) the type
of feature analyzed; iii) the information provided by the
signature (biology, prognosis, prediction of treatment re-
sponse); iv) selection based on anatomical site (oral cav-
ity, oropharynx, larynx, hypopharynx) or HPV-status for
data analysis; v) the ID of the dataset; and vi) availability
of independent validation.
A large portion of the studies regarded mRNA signa-

tures (33/61) [19–51], while a minor portion of the studies
considered miRNA signatures (11/61) [52–62] and other
non-coding RNA signatures (13/61) [ 63–76]. Only 4/61
[77–80] studies identified signatures by a high-throughput
omics analysis of methylated DNA. The percentage distri-
bution of the studies according to the type of features ana-
lyzed is reported in Fig. 1. The information provided by
the signature, i.e. biology, prognosis and prediction of
treatment response, are depicted in Fig. 2.
Most of the identified signatures had a prognostic

value (36/61); on the contrary, only a minority (7/61)
was related to prediction of treatment response. No sig-
nature derived from the study of other non-coding
RNAs or DNA methylation had prognostic or predictive
value.
A total of 21 studies selected HNSCC samples based

on specific anatomical site or HPV status, while no se-
lection was applied in the remaining 40 studies. Another
remarkable aspect, regarding datasets of the analyzed
studies, is the presence or absence of internal validation
in the same publication: only half of the studies included
in our analyses performed a validation in independent
datasets.
Noteworthy, the majority of transcriptomic and epige-

nomic datasets used to define or validate the signature
under evaluation were generated by TCGA. TCGA data-
sets were the only ones included in meta-analyses or
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validation set in 46/61 studies: mRNA (24/33); miRNA
expression (7/11); DNA methylation (3/4); and 12/13
studies on non-coding RNA.
Even though all the selected studies deserve attention,

a detailed analysis of each one is out of scope of this sur-
vey. However, we decided to comment the development
and exploitation of three gene-expression signatures,
whose clinical impact on prognosis/prediction of treat-
ment response could be high. Two signatures were ini-
tially identified by analysis of HNSCC cell lines. These
gene classifiers/indexes were subsequently tested in
historical retrospective clinical cohorts and validated in
prospective clinical studies, showing promising prognos-
tic or predictive ability. The first signature is the radio-
sensitivity index (RSI), whose development and clinical
validation in three data sets of rectal, esophageal and

HNSCC was originally described in 2009 [81]. The RSI
was further commented in 2017 [82] and constituted the
pillar for proposing a genome-based model for adjusting
radiotherapy dose (GARD) as it was applied to a large
retrospective, cohort-based study [83]. At present, a
company (Precision Genomic Radiation Therapy plat-
form: pGRT™) developed a mathematical approach to
the integration of genomics into radiation treatment and
planning; this application is central to the Cvergenx pat-
ented RSI and GARD (https://www.cvergenx.com/). At
the present, this nomogram is in development for clin-
ical purposes in other tumor types, but not in HNSCC.
The second signature is the 15-gene hypoxia classifier,

first described between 2010 and 2011 [84, 85] and then
validated as prognostic signature in retrospective series
[86]. A patent application is currently pending on this
method for determination of clinically relevant hypoxia
in cancer specimen (WO/2012/146259). The clinical
relevance of this signature is highlighted by the decision
to conduct a double blind randomized multicenter phase
III study, the Intergroup EORTC-1219-ROG-HNCG/
DAHANCA-29 trial (NCT01880359). This study is
designed to prospectively evaluate if nimorazole, a radio-
sensitizer, can improve the effect of accelerated
concomitant chemo-radiotherapy with cisplatin on the
locoregional control rate in patients with newly diag-
nosed HPV 16 negative stage III-IV carcinoma of the
larynx, oropharynx or hypopharynx. The study is de-
signed to stratify patients according to the 15-gene sig-
nature in order to determine if the treatment benefit is
larger in patients who carry a hypoxia- profile.
The third signature [32], published in 2016 by some of

the Authors of the present paper, analysed HNSCC gene

Fig. 2 Comparison of each studied feature, according to their analysis objective (biology, prognosis, prediction of treatment response)

Fig. 1 Omics based published literature. Visual distribution (%) of
the retrieved 61 published papers, according to the studied feature
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expression of patients with short and prolonged re-
sponses to cetuximab- and platinum-based chemother-
apy. Basal subtype traits, including signatures of EGFR
signalling and hypoxic differentiation, characterized pa-
tients with long response whereas short-response pa-
tients showed RAS activation. These results were
commented upon [87] as an important step in the iden-
tification of candidate predictive biomarkers of response
to cetuximab–platinum therapy in recurrent/metastatic
HNSCC patients. Furthermore, the predictive power of
the signature were refined by the creation of a common
network with results from miRNA analyses of the same
sample set [58]. At last, a validation was successfully
completed in different sample sets of recurrent/meta-
static HNSCC treated with different anti-EGFR agent,
specifically the phase II PANI01 trial employing panitu-
mumab [88] and a window of opportunity trial evaluat-
ing pre-operative afatinib [89]. Despite differences in
clinical settings and anti-EGFR inhibitor treatments, pre-
diction of response by the previously identified Cluster 3
signature and selected miRNAs was comparable. Cluster
3 signature is characterized, beside hypoxia, by others
functional pathways including altered metabolism.

Conclusions and future directions
In the last decade, several progresses have been achieved
not only in the methodology for “omics” analyses but
also in availability of data repositories and web-based
tools for the storage and the analysis of the enormous
amount of data generated. Despite these progresses, the
present literature revision highlighted that most of pub-
lished works on HNSCC are not omics-based. In fact,
we were able to retrieve only 61 such studies out of
more than 1000 that were initially identified in our
research.
Based on this overview on omics-related literature in

HNSCC, we identified three major limits: i) the classical
epigenomics area (DNA methylation) and the omics
based on non-coding RNA (miRNA, lncRNA and piR-
NAs) have been analyzed quite recently; ii) the limited
sample size included in most “omics” studies; iii) the
largest dataset for HNSCC at present available is TCGA;
and iv) even if there was an evident expansion of omics-
related HNSCC publications starting from 2017, this in-
crease should be partially attributed to the reiterated
bioinformatic analysis of the TCGA dataset. To overcome
the issues, the integration of multiple datasets through a
meta-analysis approach has been reported to offer advan-
tages, improving the reliability of results [21, 52]. How-
ever, some important aspects included in the more recent
analyses should be highlighted. The presence of HPV
infection in HNSCC, especially those arising from the
oropharynx, has a well-known and profound impact on
prognosis. The recently released 8th edition of the

American Joint Committee on Cancer (AJCC) staging
system has introduced major differences in oropharynx
squamous cell carcinoma, now staged according to p16
status [90]. Few recent omic-based analyses dissected
the biologic aspect underling this phenomenon [91]
and very recent data indicate a clear association be-
tween subtypes and different prognosis [52]. A deeper
knowledge of molecular biology and mechanisms of
carcinogenesis in HPV-related HNSCC will be critical
in order to further differentiate patient’s prognosis and
therefore improve disease management. Of note, in the
context of growing epidemics [92] the identification of
ideal candidate for safe de-escalated therapy should be
focused on genomic and molecular factors in order to
achieve a successful application of the precision medi-
cine ideal [93]. Another point of emphasis derived from
the present overview is the growing integration among
omics data obtained on the same cohort of patients.
Even if these experiences are still limited for HNSCC
and in terms of types of omics employed and amount of
published studies [23, 27, 43, 58, 66, 76], these initia-
tives enabling to better dissect cancer complexity de-
serve further investigations. Moreover, we can expect
that new approaches based on artificial intelligence will
be available in the next future dealing with more complex
data even integrating multi-omics layers [94]. At present,
a particular method, self-organizing maps (SOM)-machine
learning offers a practical solution when hundreds of sam-
ples are profiled for thousands of genes as microarray/
RNAseq and a number of studies on different cancer types
proved its robustness [18, 19]. As an example SOM en-
abled to separate oropharynx p16 positive tumors in three
clusters with different prognosis [52]. Future informatic
analyses are expected to: i) identify and implement ser-
vices to retrieve omics data from public repositories; ii)
harmonize omics data in order to merge different data
sources in one integrated, HNSCC-specific dataset; and
iii) explore the resulting dataset with dedicated tech-
niques. Finally, we have to acknowledge not only the im-
portant anatomical site specific contribute of TCGA on
HNSCC [95], but also the recent contribution of the Can-
cer Genome Atlas Pan-Cancer analysis project, which, by
a multiplatform analysis of different cancer types [96, 97],
revealed a molecular classification within and across tis-
sues of origin. In particular, the analyses of 12 and 42 dif-
ferent cancer types by Campbell et al. [97] and Chen et al.
[28], respectively, enabled to reveal that: i) squamous cell
cancers from different tissue sites may be distinguished
from other cancers and may be subclassified molecularly
by squamous cell pathways and programs providing can-
didates for therapy; and ii) a small subset of HNSCC ex-
presses evident traits of neuro-endocrinicity. In addition
to the Cancer Genome Atlas upcoming data, in the next
years we hope to witness a surge of new omics-based
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analyses in HNSCC, and based on new, large and rigor-
ously clinically annotated datasets. An example is repre-
sented by the European Commission funded project
named “Big Data and Models for Personalized Head and
Neck Cancer Decision Support (BD2Decide)” (Clinical-
Trial.gov Identifier NCT02832102, http://www.bd2decide.
eu/). The project, started on 2016 and expected to be con-
cluded at the end of 2019, aims at the definition of a prog-
nostic tool based on the integration of multi-omics
analyses of a large dataset of locoregionally advanced
HNSCC.
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