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Abstract

Recent advancements in computational power, machine learning, and artificial intelligence technology have
enabled automated evaluation of medical images to generate quantitative diagnostic and prognostic biomarkers.
Such objective biomarkers are readily available and have the potential to improve personalized treatment, precision
medicine, and patient selection for clinical trials. In this article, we explore the merits of the most recent addition to
the “-omics” concept for the broader field of head and neck cancer – “Radiomics”. This review discusses radiomics
studies focused on (molecular) characterization, classification, prognostication and treatment guidance for head and
neck squamous cell carcinomas (HNSCC). We review the underlying hypothesis, general concept and typical
workflow of radiomic analysis, and elaborate on current and future challenges to be addressed before routine
clinical application.
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Background
Structural and functional imaging provide data that are
integral for diagnosis, treatment response evaluation,
and surveillance in patients with head and neck squa-
mous cell carcinoma (HNSCC). The large amount of
volumetric bioimaging information amassed in institu-
tional archives constitutes an extensive database amen-
able to high-throughput, quantitative image analysis.
Radiomics refers to automated extraction of high-
dimensional sets of quantitative descriptors (“radiomic
features”) from medical images (e.g. CT, MRI, PET etc.)
for development of novel diagnostic and prognostic bio-
markers. Machine learning (ML) algorithms and artificial
intelligence (AI) are best suited for analysis of radiomics

high-dimensional data. Radiomics provides fast, low-cost
and non-invasive, yet comprehensive tissue and organ
characterization, as features are extracted directly from
(pre-processed) standard-of-care medical images. The
generated features offer information complementary to
traditional clinical predictors in numerous applications,
which may help advance cancer care towards personal-
ized precision medicine. Numerous recent radiomics
studies have focused on classification, characterization,
prognostication, and treatment guidance of HNSCC.
Paired with key clinical predictors, radiomic analysis

can capture a large variety of HNSCC properties [1], en-
abling the predictive models to more accurately reflect
the spatial, metabolic, and morphological heterogeneity
of primary tumor lesions and metastatic lymph nodes.
This review aims to provide an overview of recently pub-
lished HNSCC radiomics studies focusing on (molecular)
characterization, classification, prognostication and treat-
ment guidance. The general principle of radio(geno)mic
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approaches is beyond the scope of this review; however,
reproducibility and observer variability are certainly a
minor concern with (semi-) automated approaches. On
the other hand, fully automated segmentation can only be
“as good as” the expert-generated ground truth data used
for development and may be impaired by artifacts, pres-
ence of multiple pathologic findings and other abnormal-
ities not considered in the development process. The
resulting imprecisions in segmentations will undoubtedly
affect the quality and usefulness of extracted radiomic fea-
tures, warranting thorough human validation.
Image pre-processing is usually applied as the next step

following segmentation: Resampling voxels to uniform sizes
is often necessary due to the heterogeneity of the available
imaging data, originating from different scanners and re-
construction protocols. Additionally, resampling to iso-
tropic voxels (i.e. voxel with identical edge lengths) should
be considered as it guarantees rotational invariance of tex-
ture features [21]. While CT imaging uses a “real-valued”
grey scale (the Hounsfield unit scale is an absolute repre-
sentation of physical density), other imaging modalities re-
quire gray scale homogenization to facilitate inter-patient
comparability of radiomic features; for example, PET scan-
ners measure radioactivity concentrations [MBq/mL] which
directly depend on the amount of injected radiotracer and
patient weight [22]. To compensate for variability, the stan-
dardized uptake value (SUV) is calculated for each voxel as
a relative measure of radiotracer uptake in clinical practice
as well as radiomics studies [17, 19, 23–25]. MRI grey scales
are expressed in arbitrary units unique to the hardware and
reconstruction method used. Presence of heterogeneous
image acquisition variables in an MRI dataset always neces-
sitates image normalization before radiomic feature extrac-
tion [26–28]. Notably, in addition to the original image,
radiomic features are often extracted from transformed or
filtered images. A multitude of studies applied wavelet-
decompositions to extract texture features from different
frequency bands of the original image [7, 18, 24, 25, 29, 30].
Smoothing filters (e.g. Gaussian filters) or combined filters
(e.g. Gaussian smoothing followed by Laplacian for edge
enhancement) have also been implemented by some studies
[20, 30–32].
Radiomic feature extraction represents the last step of

common radiomics pipelines. Zwanenburg et al. pub-
lished “The image biomarker standardisation initiative”
(IBSI), which is the most recent attempt to standardize
image pre-processing and radiomics feature sets across
the field [21]. In brief, IBSI defines 11 feature families,
assessing geometric aspects of the ROI/VOI shape,
quantifying the grey scale intensity (distribution), and le-
sion texture. Feature extraction is usually performed by
dedicated software in a fully automated fashion. Recent
studies extracted their feature sets from original images
and several derivatives thereof – generated by filtering,

resampling and transformation. This approach com-
monly yields feature vectors in the magnitude of hun-
dreds to several thousand data points per segmented
ROI/VOI.
Both open source- and in house-developed feature li-

braries and radiomics extraction software have been uti-
lized in recent radiomics studies. Two commonly used
open-source solutions for radiomics feature extraction
are the “Imaging Biomarker Explorer (IBEX)” [33], and
“PyRadiomics” [34]. They represent adaptable, configur-
able platforms for image preprocessing and feature ex-
traction and were applied in recent HNSCC radiomics
studies (for example IBEX in refs [31, 35], .PyRadiomics
in refs [36, 37].). The considerable methodological vari-
ability in HNSCC-related radiomics studies heralds the
need for devising evidence-based consensus radiomics
pipelines to improve reproducibility and generalizability.
Fig. 1 summarizes the essential steps in common radio-
mics pipelines.

Machine learning analysis of radiomics features
Radiomics pipelines extract high-dimensional, quantita-
tive feature sets from medical images [2]. This bioimage-
based information is most helpful when combined with
clinical variables, serum markers, and other conventional
prognostic biomarkers, creating the need for efficient
analysis and development of predictive models based on
high-dimensional data. Machine learning (ML) methods
have proven to be statistically powerful tools for taking
on such challenges [2, 38].
ML refers to a series of statistical algorithms driving

their functionality from labelled or unlabeled training data,
rather than applying predefined sets of rules and functions
[38]. This property is ideal in the setting of radiomics re-
search, where extensive numbers of bioimaging features
are extracted, to predict molecular biomarkers, histo-
pathological characteristics, clinical outcome, or treatment
response [2].
To limit overfitting and augment generalizability, ML

studies are ideally based on training, validation, and in-
dependent/external testing in separate datasets [38]. The
training and validation datasets are used to iteratively fit
the ML model (training data), assess its performance
(validation data) and optimize model parameters (“tun-
ing of hyperparameters”) [38]. Alternatively, cross valid-
ation may be applied to fit/assess/tune the model based
on random subdivision and iterative rounds of training
and validation [20]. The independent/external test co-
hort will be kept fully isolated from the model develop-
ment process and is used to test the final ML model and
confirm its performance and generalizability [20, 38].
Typically, in radiomics studies, a data dimensionality

reduction strategy is combined with a ML classification
or regression algorithm [20]. Dimensionality reduction
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