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The current treatment paradigm in head and neck cancer does not adequately address its clinical and biological
heterogeneity. Data from genomic profiling studies in head and neck squamous cell carcinoma (HNSCC) have
revealed the molecular features that are unique to HNSCC subgroups. This progress in the understanding of HNSCC
biology provides an opportunity to develop personalized therapies for patients with distinct molecular subtypes to
achieve better clinical outcomes including survival. However there are several well-recognized challenges that need
to be overcome before genotype-matched therapies make precision medicine a reality for patients with HNSCC.
Selection of appropriate patients for biomarker directed clinical trials based on sound scientific rationale will be
critical in making cancer genomics more applicable in this malignancy.

Background

Head and neck cancer is a heterogeneous disease com-
prising epithelial tumors of the upper aerodigestive tract.
The majority (~90 %) are squamous cell carcinomas
arising from the oral cavity, oropharynx, hypopharynx
and larynx classed together as head and neck squamous
cell carcinomas (HNSCC) [1]. The main risk factors for
developing HNSCC are tobacco smoking, alcohol drink-
ing [2] and human papillomavirus (HPV) infection [3].
HPV-positive HNSCC, which is usually found in orophar-
ynx, is a sexually transmitted disease with a rising inci-
dence in many developed countries [4]. It is biologically
and clinically distinct from HPV-negative HNSCC that is
classically associated with tobacco and alcohol exposure.
Patients with HPV-positive disease have a better prognosis
compared to those with HPV-negative disease [5].

The standard treatment paradigm for HNSCC is based
on anatomical location and stage of the disease. The bio-
logical heterogeneity of HNSCC, however, is not rou-
tinely incorporated in the current clinical management
algorithms. In general, surgery and/or radiotherapy rep-
resent the treatment of choice for early stage disease.
Surgery is usually preferred for oral cavity tumors, with
the need for post-operative adjuvant radiotherapy typic-
ally based on recurrence risks that are determined by

* Correspondence: Lillian.Siu@uhn.ca

Drug Development Program, Princess Margaret Cancer Centre, University
Health Network, 610 University Avenue, Suite 5-718, Toronto, ON M5G 2M9,
Canada

( ) BiolMed Central

stage and tumor pathology. Radiotherapy is generally
given as primary treatment in oropharyngeal, hypophar-
yngeal and laryngeal tumors due to the interest in organ
preservation, with salvage surgery considered for local
recurrences after primary radiotherapy. Concurrent
cisplatin-based chemo-radiotherapy is the standard of
care for locoregionally advanced disease. For those patients
who are deemed inappropriate candidates for platinum-
based chemoradiotherapy, radiotherapy combined with the
anti-epidermal growth factor receptor (EGFR) monoclonal
antibody cetuximab, may be an alternative. The ideal
risk-adapted therapeutic strategies aiming to optimize
disease control with minimal long-term toxicities in
favorable risk early stage disease, and to maximize
survival outcomes with acceptable toxicities in poor
risk disease, are still evolving.

For recurrent and metastatic HNSCC, platinum-based
chemotherapy remains the mainstay of treatment,
and addition of cetuximab to first line chemotherapy
(cisplatin or carboplatin plus 5-fluorouracil) offers modest
survival benefit [6]. Currently, there is no universally
agreed second line therapy.

So far, the search for personalized therapy in patients
with HNSCC remains elusive. Cetuximab is the only
targeted biological agent approved for use in HNSCC
and neither EGFR copy number nor level of EGFR
expression was shown to predict its response [7, 8].
The hope, however, has been that as we sequence
broader and deeper into HNSCC genomes, biological
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drivers in individual HNSCC will be identified with a high
precision allowing development of genotype-matching
therapy. The emerging data from HNSCC genome sequen-
cing studies [9-13], including recent results from The Can-
cer Genome Atlas (TCGA) initiative [14], now provide an
opportunity to develop genomically personalized therapy
for patients with HNSCC.

Genomic landscape of HNSCC

Structural alterations

Genomic structural alterations are commonly seen in
HNSCC regardless of HPV status. Both HPV-positive
and HPV-negative tumors harbor amplifications of 1q,
3q, 5p and 8q and deletions of 3p, 5q, and 11q [9, 10,
12-14]. The amplification of 3q26/28 region containing
squamous lineage transcription factors, 7P63 and SOX2,
and PIK3CA oncogene is seen in both, but more fre-
quently in HPV-positive subtype [9, 10, 12-14]. In HPV-
positive tumors, recurrent deletions in TRAF3 and 11q
including ATM1 and focal amplification of E2FI are also
seen but 9p21.3 containing CDKN2A is usually intact
[14]. In contrast, in HPV-negative tumors, 9p21.3 is
commonly deleted while 11q13 containing CCNDI,
FADD and CTTN, and 11q22 containing BIRC2 and
YAPI are amplified [14]. It is noteworthy that 7p region
that includes EGFR is less amplified in HPV-positive
tumors [14].

From a biological perspective, recurrent CDKN2A de-
letions and CCNDI amplification seen in HPV-negative
tumors and E2FI amplifications in HPV-positive tumors
indicate that loss of cell cycle regulation is the fundamen-
tal event in HNSCC carcinogenesis. The importance of
mitogen activated protein kinase (MAPK) pathway in
HPV-negative HNSCC is highlighted by EGFR amplifica-
tion and PI3SK-PTEN-AKT-mTOR pathway in both
HPV-positive and HPV-negative tumors by PI3KCA
amplification. Recurrent deletions in TRAF3 in HPV-
positive tumors and amplification of FADD and BIRC2 in
HPV-negative tumors showed that NF-kB pathway activa-
tion is an important biological driver in HNSCC. TRAF3
deletions also indicate defective innate immunity response
in HPV-positive HNSCC.

Somatic mutations

Genes in cell cycle regulation

Alterations in genes that regulate cell cycle are com-
monly seen in HNSCC. In HPV-negative tumors, TP53
is mutated in 80-87 % and CDKN2A gene alterations
are seen in 32-57 % [11, 12, 14]. CDKN2A can also be
silenced by promoter hypermethylation in HPV-negative
HNSCC [15] and it is noteworthy that CDKN2A expres-
sion is lost in almost all HPV-negative HNSCC [16]. On
the other hand, P53 and CDKN2A gene alterations are in-
frequent in HPV-positive tumors. A small subset of HPV-
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negative oral cavity squamous cell carcinoma do not have
TP53 mutations but harbor activating HRAS mutations
and inactivating CASP8 mutations constituting a distinct
subset with a favorable prognosis [14]. RBI mutations,
although rare at <10 %, are seen predominantly in
HPV-positive tumors [11]. MYC, in contrast, is amplified
in 5-15 % of HPV-negative tumors [11, 14].

PIK3CA & PTEN

PIK3CA is the most commonly altered oncogene in
HNSCC [11, 12, 14]. The presence of hotspot mutations
in PIK3CA helical domain is a unique feature of HPV-
positive tumors, whereas, in HPV-negative tumors, mu-
tations occur throughout the gene despite helical and
kinase domain mutations are still common [11, 12, 14].
Twenty one percent of patients in the TCGA cohort had
a PIK3CA mutation and of those, 25 % also had concur-
rent PIK3CA amplification [14]. An additional 20 % of
tumors had PIK3CA amplification without mutations
[14]. In addition to PIK3CA alterations, PTEN mutations
or deletions are seen in ~11 % of HPV-positive HNSCC
and 5 % of HPV-negative HNSCC [11, 17, 18].

Genes encoding receptor tyrosine kinase (RTK) and MAPK
pathways

HPV-positive and HPV-negative HNSCC have alter-
ations in genes encoding RTK and MAPK pathways at
differing frequencies. While alterations in EGFR, FGFRI,
and IGFIR are predominantly seen in HPV-negative tu-
mors, FGFR2 and FGFR3 alterations including FGFR3
fusions are more frequent in HPV-positive tumors
[12, 14]. MET amplification occurs in 2-13 % of
HNSCC predominantly in the HPV-negative subtype
[19]. ERBB2 alterations are seen in both subtypes at a
low frequency (3-4 %) [14]. Mutations in MAPK
pathway, mainly HRAS mutations in HPV-negative tu-
mors and KRAS mutation in HPV-positive tumors,
are seen in ~6 % of HNSCC [12, 14].

DNA damage response genes

Mutations in BRCA1, BRCA2 and ATR are seen in 6 %,
7 % and 4-10 % of HNSCC respectively [11]. ATM mu-
tations are also seen in 1-16 % of HPV-positive HNSCC
across studies [11, 12, 14].

NOTCH1

NOTCHI is one of the most commonly mutated genes
in HNSCC (11- 19 %) [9, 10, 14]. Inactivating mutations
are predominantly found in HNSCC cases of the TCGA
cohort whereas activating gain of function mutations
with overexpression of downstream effectors are found
predominantly in Chinese HNSCC cases [20-22]. It is
well recognized that the biological role of NOTCH could
be contextual [23] and NOTCH undoubtedly plays a
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complex biological role in HNSCC making it challenging
to target without further biological insight.

Patterns of gene expression

In 2002, Belbin et al. first reported that HNSCC could
be classified by gene expression patterns (N =17) [24].
Four main subtypes of HNSCC (Group 1-4) based on
expression pattern of 12814 genes were subsequently de-
scribed by Chung et al. (N =60) [25]. These four subtypes
were validated independently in the University of North
Carolina cohort (N =138) and subtypes 1-4 were named
as basal, mesenchymal, atypical and classical respectively
[26]. The basal subtype is characterized by activation of
EGFR pathway. The mesenchymal subtype has epithelial
to mesenchymal transition (EMT) gene expression sig-
nature. The atypical subtype mainly consisted of HPV-
positive tumors with high expression of CDKN2A, LIGI1
and RPA2. The classical subtype showed tobacco-induced
gene expression signature.

TCGA also independently validated these four signa-
tures (N =278) [14]. Integrated analysis of DNA alter-
ations and RNA expression patterns in TCGA cohort
showed that basal subtype tumors had NOTCH1 inacti-
vation with intact oxidative stress signaling. This subtype
also included tumors with CASP8 and HRAS mutations.
In contrast, high expression of CD56, a natural killer cell
marker, and HLA class I mutations were seen in the
mesenchymal subtype. The atypical subtype again con-
sisted mainly of HPV-positive tumors characterized by ac-
tivating mutations in PIK3CA helical domain and a lack of
chromosome 7 amplifications indicating a low level of
EGFR amplification. In contrast, the classical subtype was
seen in heavy smokers and at laryngeal site, characterized
by TP53 mutation, CDKN2A loss, chromosome 3q ampli-
fication and alteration of oxidative stress genes.

These studies, however, suffer from underrepresenta-
tion of HPV-positive tumors. Gene expression analysis

Page 3 of 10

of a cohort enriched with HPV-positive HNSCC by et al.
demonstrated that such tumors could be classified into
classical-HPV and mesenchymal-HPV [27]. While both
subtypes were characterized by enriched cell cycle genes,
classical-HPV also had activation of putrescine (polyamine)
degradation pathway possibly related to detoxification of
tobacco use and mesenchymal-HPV had enrichment of
immune response genes related to the tumoral CD8" T
lymphocytes infiltration [27]. HPV-negative mesenchymal
tumors in this study also had enrichment of similar im-
mune related genes [27] inferring mesenchymal tumors
might respond better to immunotherapy.

Genomically driven dysregulated pathways and
personalized therapies

The gene alterations found in HNSCC across studies
[9-14] perturb multiple biological pathways. Herein, these
pathways are discussed in the context of rationally
matched therapies (summarized in Fig. 1).

TP53 and cell cycle regulation

TP53 is the most commonly mutated tumor suppressor
in HNSCC and almost all HNSCC displayed a dysregu-
lated cell cycle [14]. Loss of cell cycle regulation at G1
to S phase checkpoint is the dominant biological feature
in HNSCC. TP53 and CDKN2A loss of function alter-
ations and CCNDI1 amplification are the main driving
mechanisms of this dysregulation in HPV-negative tu-
mors [11, 12, 14]. In HPV-positive tumors, degradation
of TP53 and RB1 by E6 and E7 viral proteins and focal
amplification of E2FI are the main culprits [12, 14].

To exploit cell cycle dysregulation as a drug target in
HNSCC, cyclin dependent kinase (CDK) inhibitors are
of particular interest for patients with CCNDI amplified
tumors. CDK4/6 inhibitors, ribociclib (LEEO11) and pal-
bociclib, which prolong progression free survival of pa-
tients with hormone receptor positive, HER2-negative

Receptor Tyrosine Kinase PI3K Cell Cycle Regulation DNA Repair NOTCH
ERBB | FGFR | MET | PIK3CA PTEN ccnpr | PRAV2ATR | NoTCHI
ERBB FGFR MET PI3K mTOR CDK4/6 PARP & ATR NOTCH
TKI TKI TKI inhibitor | inhibitor Inhibitors Inhibitors inhibitor
EGFR MAB + EGFR MAB + EGFR MAB + EGFR MAB + NOTCH Inhibitor +
ERBB TKI MET TKI PI3K/mTOR inhibitor CDK4/6 Inhibitor mTOR inhibitor
Fig. 1 Genomically driven dysregulated pathways and potential matched therapies in HNSCC. Combination strategies currently being tested in
ongoing clinical trials are also shown. Abbreviations: MAB, monoclonal antibody; TKI, tyrosine kinase inhibitor
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advanced breast cancer [28, 29], are currently in early
phase development in HNSCC (Tables 1 and 2).

In vitro inhibition of G2 to M phase checkpoint en-
hances apoptosis induced by DNA damaging agents in
TP53 mutant HNSCC [30]. A WEE-1 kinase inhibitor,
AZD1775, which disrupts G2 checkpoint by inhibiting
CDK1 phosphorylation, is currently being tested in
HNSCC in the neo-adjuvant setting in combination with
chemotherapy (NCT02508246) and in the locoregionally
advanced setting combined with chemoradiotherapy
(NCT02585973). Inhibition of checkpoint kinase 1/2
(CHK1/2) also induces mitotic catastrophe followed by
cell death in TP53 mutant HNSCC in vitro [31]. As such
combining CHK1/2 inhibitors with radiotherapy or DNA
damaging agents seems a rational strategy in HNSCC with
TP53 loss of function mutations. On the other hand, in
breast, ovarian, colon and prostate cancer cells, WEE-1
was found to be a synthetic lethal partner of CHK1 and
combined inhibition of WEE-1 and CHK-1 results in
tumor growth inhibition in vitro and in vivo regardless of
TP53 status [32]. Interestingly, in HPV-positive HNSCC,
combining radiotherapy with WEE-1 kinase inhibition
increases apoptosis in vitro that is caspase mediated but
independent of TP53 [33]. Currently, the role of TP53
mutation status in predicting response to WEE-1 and
CHK1/2 inhibition remains unclear in HNSCC.

PI3K-PTEN-AKT-mTOR pathway

PIK3CA is the most commonly mutated oncogene in
HNSCC and, combined with other gene alterations,
PI3K-PTEN-AKT-mTOR pathway is dysregulated in
~30 % of HNSCC [11, 14, 34]. One of the most “action-
able” target in this pathway is the activating gain of func-
tion PIK3CA mutations, as PI3K inhibitors of different

Table 1 Current active trials in HNSCC with novel single agents®
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classes, either alone or in combination with other tar-
geted agents, are in active development in HNSCC
(Tables 1 and 2). On the other hand, loss of function
gene alterations in PTEN is a challenge to target directly,
since the restoration of its tumor suppressive function is
not straightforward.

In in vitro studies and patient derived xenografts,
PIK3CA mutations sensitized response to PI3K and
mTOR inhibitors [34, 35]. However, no significant im-
provement in clinical outcomes was seen with PX-866,
an irreversible PI3K inhibitor, in unselected population
of HNSCC when combined with doxcetaxel or cetuxi-
mab [36, 37]. In particular, 8 patients with PIK3CA
mutant tumors did not respond to the PX-866 and
cetuximab combination raising doubts over the role of
PIK3CA mutations in predicting response to PI3K path-
way inhibition. On the other hand, promising tumor ac-
tivity was seen with BYL719, a PI3K class I a isoform
inhibitor, when combined with cetuximab in a phase Ib
study [38] suggesting that efficacy of isoform specific
PI3K inhibitors may be different from that of pan-PI3K
inhibitors in HNSCC. It is plausible that mutations caus-
ing different amino acid substitutions at different posi-
tions might have different biological functions with
variable sensitivities to PI3K inhibitors [39]. BYL719 is
also currently being evaluated with cisplatin-based
chemoradiotherapy in locoregionally advanced setting
in a phase I study (NCT02537223).

Previous studies demonstrated that mTOR inhibitors,
temsirolimus and everolimus, have limited antitumor ac-
tivity in platinum-refractory recurrent or metastatic
HNSCC [40, 41]. Although response rates were higher in
platinum naive setting [42, 43], these studies were per-
formed in non-selected populations and as such the role

Trial Number — Trial Drug Pathway Molecular Setting Status
phase targeted selection

NCT02429089 1 LEEO11 Cell cycle No Recurrent, metastatic Recruiting

NCT02264678 1,2 AZD6738 DNA repair  No Recurrent, metastatic, in combination with Recruiting
chemotherapy or MEDI4736 or olaparib

NCT02567396 1 Talazoparib  DNA repair  No Recurrent, metastatic Not yet recruiting

NCTO1711541 1,2 Veliparib DNA repair  No Recurrent, metastatic, in combination with chemotherapy

NCT02365662 1 ABBV-221 EGFR No Recurrent, metastatic Recruiting

NCT01345669 3 Afatinib ERBB No Placebo controlled post-chemoradiotherapy Recruiting

NCT01415674 2 Afatinib ERBB No Neoadjuvant Active, not recruiting

NCT01427478 3 Afatinib ERBB No Placebo controlled randomised phase 3, maintenance Recruiting
therapy after post-operative chemoradiotherapy

NCT02131155 3 Afatinib ERBB No Placebo controlled adjuvant trial Recruiting

NCT02216916 2 HM781-36B  ERBB No Recurrent, metastatic Recruiting

NCT02145312 2 BYL719 PI3K No Recurrent, metaststic Not yet recruiting

NCT02540928 2a AMG319 PI3K HPV-negative

Placebo controlled neoadjuvant therapy

Recruiting

Clinical trials with immune checkpoint inhibitors are not included in this Table
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Table 2 Current active trials in HNSCC testing the safety and efficacy of novel drug combinations
Trials Trial  Drug 1 Drug 2 Pathway 1 Pathway 2 Setting Status
phase
NCT01716416 1 Pazopanib Cetuximab Angiogenesis EGFR Recurrent, metastatic Recruiting
NCT02499120 2 Palbociclib Cetuximab Cell cycle EGFR Plcebo controlled randomized Recruiting
phase II, recurrent, metastatic
NCT02101034 1,2 Palbociclib Cetuximab Cell cycle EGFR Recurrent, metastatic Recruiting
NCT01711541 1,2  Veliparib Chemotherapy DNA repair ~ EGFR Recurrent, metastatic Recruiting
NCT02538627 1 MM-151 MM-121 EGFR ERBB Recurrent, metastatic Recruiting
NCT02501096 1,2  Pembrolizumab Lenvatinib Immune Angiogenesis Recurrent, metastatic Recruiting
NCT02454179 2 Pembrolizumab ACP-196 Immune Bruton Tyrosine  Recurrent, metastatic Recruiting
Kinase
NCT02646748 1 Pembrolizumab INCB039110/ Immune JAK/PIZK Recurrent, metastatic Recruiting
INCB050465
NCT01468896 1, 2 Recombinant Cetuximab Immune EGFR Recurrent, metastatic Active, not
interleukin-2 recruiting
NCT02507154 1,2 NKcells Cetuximab Immune EGFR Recurrent, metastatic Recruiting
NCT02643550 1,2 Monalizumab Cetuximab Immune EGFR Recurrent, metastatic Recruiting
NCT02110082 1 Urelumab Cetuximab Immune EGFR Recurrent, metastatic Active, not
recruiting
NCT02124850 1 Motolimod/ Cetuximab Immune EGFR Stage II-IVA, neoadjuvant Recruiting
Nivolumab
NCT02586987 1 MEDI4736 Selumetinib Immune MEK Recurrent, metastatic Recruiting
NCT01871311 1 Nilotinib Cetuximab Kit EGFR Recurrent, metastatic Recruiting
NCT02277197 1 Ficlatuzumab Cetuximab MET EGFR Recurrent, metastatic Recruiting
NCT01332266 1,2 E7050 Cetuximab MET EGFR Recurrent, metastatic Recruiting
NCT02205398 1 INC280 Cetuximab MET EGFR Recurrent, metastatic Recruiting
NCT01285037 1 LY2801653 Cetuximab MET EGFR Recurrent, metastatic Recruiting
NCT01602315 1b,2 BYL719 Cetuximab PI3K EGFR Recurrent, metastatic Active, not
recruiting
NCT01488318 2 Dasatinib Cetuximab Scr EGFR Recurrent, metastatic Recruiting

of PIK3CA or PTEN alterations in predicting response to
mTOR inhibitors in HNSCC is not clearly known.

Receptor tyrosine kinase pathways

EGFR

Overexpression of EGFR was seen in >90 % of HNSCC
and associated with a poor prognosis [44—48]. Cetuxi-
mab improves survival of patients in both locoregionally
advanced setting and recurrent or metastatic setting
when combined with radiotherapy and chemotherapy
respectively [6, 49]. However, single agent response to
cetuximab in recurrent or metastatic HNSCC is 13 %
at best indicating there is primary resistance to EGFR
inhibition [50].

EGFR alterations are found in ~15 % of patients
with HNSCC predominantly in HPV-negative tumors
[12, 14]. Neither EGFR copy number nor level of EGFR
expression was shown to predict cetuximab response
[7, 8]. EGFR mutations including EGFRvIII are also
extremely rare in HNSCC and unlikely to be useful

as predictive biomarkers for EGFR targeted therapy
[14, 47, 51-53]. However, alterations in ERBB2, MET,
PIK3CA, PTEN and HRAS can co-occur with EGFR
alterations and may explain mechanisms of EGFR in-
hibitor resistance in individual HNSCC [14]. Combined
inhibition of EGFR and other RTK and/or downstream
pathways based on genotype of tumors might overcome
primary and secondary resistance to EGER inhibition lead-
ing to improved clinical outcomes. Currently, the safety
and efficacy of cetuximab combined with multiple mo-
lecular targeted therapies are being tested in various phase
1 and 2 clinical trials (Table 2).

ERBB

ERBB?2 alteration (amplification plus mutation) is seen
in ~4 % of HPV-negative HNSCC and ~3 % of HPV-
positive HNSCC [14]. Afatinib, an irreversible pan-ERBB
inhibitor, was recently shown to improve progression-
free-survival in a non-selected population of recurrent
or metastatic HNSCC when compared to methotrexate
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in the second line setting, indicating that targeting ERBB
pathway is a valid therapeutic strategy in HNSCC [54].
Dacomitinib, another irreversible pan-ERBB inhibitor,
also demonstrated a single agent response rate of ~13 %
in a phase 2 study [55]. Presence of mutations in
PIK3CA or PTEN seems to predict poor PFS in patients
treated with dacomitinib in a separate study [56] indicat-
ing dual inhibition of ERBB and PI3K pathways might
produce better clinical benefit in patients with PIK3CA
or PTEN alterations. A recent phase Ib study has already
established maximum tolerated dose of the combination
of cetuximab and afitinib [57]. From a genomic perspec-
tive, patients with EGFR and ERBB aberrations are likely
to derive better clinical benefit from this novel combin-
ation. ERBB targeted agents are currently in active clinical
development in HNSCC (Tables 1 and 2).

FGFR

FGFRI alterations (amplification or mutations) are seen
in ~12 % of HPV-negative HNSCC and FGFR3 alter-
ations (mutations or fusions) in ~11 % of HPV-positive
HNSCC [14]. In a preclinical study FGFRI mRNA and
protein expression level but not FGFRI copy number
was found to be associated with response to a pan-FGFR
inhibitor BGJ398 [58]. Data from squamous cell lung
cancer suggest that FGFRI-amplified tumor cells with
co-expression of MYC are more sensitive to FGFR inhib-
ition [59]. Currently there is no clinical data to indicate
the efficacy of FGFR inhibitors in HNSCC as they are
still in early stages of drug development.

MET

MET amplification is found in 2-13 % of HNSCC and it
is mutated in ~6 % [19]. Acquired MET amplification is
a well-recognized biological mechanism of resistance to
EGER inhibition [60-62] and MET overexpression is fre-
quently seen in HNSCC [19]. However, in a phase II
study of foretinib, an oral multikinase inhibitor of MET
and VEGFR?2, in an unselected HNSCC population, no
partial or complete response was seen [63]. Despite
this disappointing result, combination treatment of MET
inhibitors with cetuximab or other RTK inhibitors in se-
lected population is biologically rational and still worth
investigating.

Immune related pathways and genomic predictors for
immunotherapy

HNSCC is an immunosuppressive disease and immune
checkpoint inhibitors (ICI) are emerging as a promising
therapy for patients with HNSCC. Low frequency muta-
tions of HLA-A, HLA-B and B2M are seen in both HPV-
positive and HPV-negative tumors implicating that tumor
antigen presentation may be disrupted in tumors harbor-
ing these genetic alterations [14]. Early data indicate that
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single agent response to PD-1/PD-L1 pathway inhibition
in HNSCC is ~12-20 % [64, 65]. Although objective re-
sponse rates are higher in patients with PD-L1 positive tu-
mors, PD-L1 expression was not a binary predictive
biomarker as PD-L1 negative tumors can demonstrate
meaningful tumor shrinkage or clinical benefit [64, 65].
No definite difference in response rate to ICI between
HPV-positive and HPV-negative subtypes has been ob-
served [64, 65]. CheckMate 141 (NCT02105636), a phase
III study that is comparing the efficacy of nivolumab, an
anti-PD-1 inhibitor, in the platinum-resistant recurrent or
metastatic setting with investigator’s choice of therapy has
been stopped early because it met the primary overall sur-
vival endpoint at a preplanned interim analysis [66].

In squamous cell lung cancer, response to nivolumab
was shown to associate with tumor mutation burden,
neo-antigen load and smoking mutation signature [67].
Although hypermutated phenotype is rare in HNSCC,
neo-antigen landscape and smoking signature may be
relevant in predicting immunotherapy response in
HNSCC. Seventy five percent of HPV-positive HNSCC
and 23 % of HPV-negative HNSCC in the combined Uni-
versity of Chicago and TCGA cohort (N =134 +424 =
558) have an inflamed tumor phenotype [62]. This pheno-
type is characterized by enrichment of immune response
genes related to intra-tumoral CD8" T lymphocyte infil-
tration, PD-L1 expression and expression of CTLA-4,
LAG3, PD-L2 and IDO [68]. There is also a strong correl-
ation between inflamed tumor phenotype and mesenchy-
mal subtype [68]. Considering these emerging data, it is
tempting to speculate that HNSCC with this gene expres-
sion signature may respond better to ICI. This hypothesis,
however, needs further prospective clinical validation.

DNA damage response and homologous recombination
(HR) deficiency

Interestingly somatic mutations in genes involved in DNA
damage response including HR are seen in HNSCC at
various frequencies [11]. Somatic mutations in BRCAI
(~6 %), BRCA2 (~7 %), ATR (4-10 %) and ATM (1-16 %)
are all reported providing the rationale for targeting DNA
repair pathway in these tumors [12]. Inactivation of Fan-
coni anemia/BRCA pathway via promoter hypermethyla-
tion of FANCF was also seen in 15 % of patients with
HNSCC in a previous study [69]. PARP inhibitors and
ATR inhibitors, in combination with radiotherapy or cis-
platin, are of particular interest for patients with HR defi-
cient genotype. Currently ATR inhibitors, AZD6738 and
VX-970, are in early phase of development in HNSCC
(NCT02264678; NCT02567422). Furthermore, in a phase
I study of AZD1775, a wee-1 kinase inhibitor, a HNSCC
patient with a BRCA mutation achieved a partial response
[70] supporting that DNA repair pathway might be a valid
therapeutic target in selected HNSCC population.
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Notch pathway

NOTCHI is one of the most commonly mutated genes
in HNSCC (~10-15 %) [9, 10, 14] and associated with a
poor prognosis [21]. NOTCH pathway plays complex
biological roles including cell differentiation, proliferation,
angiogenesis and survival [71-73]. As such NOTCH path-
way inhibition could be a valid therapeutic strategy in
HNSCC. A recent phase I study reported that 2 out of 15
HNSCC patients (13 %) treated with combination of
NOTCH inhibitor MK-0752 and mTOR inhibitor ridafor-
olimus achieved partial response [74]. However, consider-
ing the fact that both activating and inactivating NOTCH
mutations are seen in HNSCC and the increased risk of
squamous cell carcinoma of skin observed with gamma-
secretase inhibitors in patients with Alzheimer’s disease
[75, 76], targeting NOTCH pathway in HNSCC in the
right biological context with minimal risk will be challen-
ging. Further biological insight will be necessary before
NOTCH pathway inhibition can be optimally exploited
for treatment of patients with HNSCC.

Challenges & future directions

The recent genomic profiling studies identified biologic-
ally distinct HNSCC subgroups providing rationale for
developing genomically directed personalized therapies.
However, there are well-recognized challenges. Currently
available genomic data in HNSCC is limiting as they
were mostly derived from early stage resectable and lo-
cally advanced tumors with gross underrepresentation of
recurrent/metastatic disease (Table 3) and do not truly
inform the biological drivers of recurrent and metastatic
HNSCC in which most novel targeted agents are cur-
rently being tested. Most studies also included only
small number of HPV-positive cases (Table 3). More-
over, they were conducted in heterogeneous patient pop-
ulations without detailed clinical annotation and as such
lack power to determine prognostic and predictive value
of genetic alterations identified.

From a biological point of view, the main challenges
are those posed by spatial and temporal tumor hetero-
geneity. Considering profound intra-tumor genetic het-
erogeneity found in multiple solid tumor types [77-79]
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including HNSCC [80, 81], it will be difficult to make
accurate assessment of tumor genetic characteristics
from a single tumor biopsy. To address this in patients
with multiple metastatic sites, ideally multiple tumor bi-
opsies from all disease sites will be necessary to assess
tumor genomic profile accurately. Cleary, this is not lo-
gistically feasible in current oncology practice and in-
novative tumor sampling methods will be necessary to
overcome this challenge. One potential method is muta-
tion profiling of plasma-derived circulating tumor DNA
(ctDNA) using next generation sequencing (NGS). As
tumor DNA from different metastatic sites are shed into
circulation, it could be argued that ctDNA contains muta-
tions or genetic alterations derived from all sub-clones of
tumors. With rapid advances in NGS technologies, several
groups have demonstrated that molecular characterization
of ctDNA is feasible [82—87]. Analysis of serial ctDNA
samples could reveal clonal evolution of tumors highlight-
ing the future potential of ctDNA mutation profiling in
addressing both spatial and temporal intra-tumor genetic
heterogeneity. In appropriate HNSCC cases, it might also
be possible to study tumor mutations from DNA isolated
from saliva. The feasibility of tumor specific mutation test-
ing from ctDNA and saliva in patients with HNSCC has
been explored in a recent study [88].

The obvious drug targets in cancer genomes are acti-
vating mutations in driver oncogenes. In HNSCC
PIK3CA is the most frequently mutated oncogene
(~20 %) and PI3K inhibitors are in active development.
However, despite the preclinical evidence showing
PIK3CA mutations sensitize response to PIK3A inhibi-
tors, clinical results so far have been disappointing ex-
cept possibly for BYL719, a PI3K class I a isoform
inhibitor, in combination with cetuximab where some
signals of activity have been observed. Further biological
insight will be needed to advance development of PI3K
inhibitors in HNSCC. Beyond PIK3CA, actionable muta-
tions in other oncogenic driver genes such as ERBB,
FGFR, and MET are relatively rare making it challenging
to conduct biomarker directed clinical trials. Future
trials with innovative designs will be needed to address
this issue.

Table 3 Summary of head and neck cancer clinical samples in genome sequencing studies

Study Total Oral Oropharynx Hypopharynx Larynx Other Lymph Metastatic HPV-Positive HPV-Negative
samples cavity primary sites  nodes samples

Stransky et al. [9] 92 51 (55%) 15 (16 %) 7 (8 %) 15016 %) 2 (2 %) - - 13 (14 %) 79 (86 %)

Agrawal et al. [10] 32 NK NK NK NK NK - - 4 (12 %) 28 (88 %)

Chung et al. [11] 252 53Q21% 12(5%) - 73%)  103(41%)  25(10%) 80(32%) 84 (33 %) 168 (67 %)

Seiwert et al. [12] 120 23 (19%) 67 (56 %) 8 (7 %) 19 (16 %) 3 (2 %) - - 51 (42 %) 69 (58 %)

Pickering et al. [13] 38 38 (100 %) - - - - - NK NK

TCGA [14] 279 172 (62 %) 33 (12%) - 72 (26 %) - - - 36 (13 %) 243 (87 %)

Abbreviation: NK not known, TCGA The Cancer Genome Atlas
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Although genetic alterations in tumor suppressor
genes TP53 and CDKN2A are common in HNSCC,
these alterations are notoriously difficult to exploit for
targeted therapeutics at present. Again, mutations in
other tumor suppressor genes are seen at low frequen-
cies. Further studies will be needed to elucidate synthetic
lethal interactions between these genetic events using
computational algorithms such as DAISY (data mining
synthetic lethality identification pipeline) [89] or using
si-RNA, sh-RNA or CRISPR (clustered regularly inter-
spaced short palindromic repeats) screens so that ra-
tional treatment strategies could be developed based on
tumor genomic profiles [90]. Currently, one of the most
exciting synthetic lethality opportunities involves the use
of DNA damaging agents such as PARP inhibitors or
ATR inhibitors in patients with HR deficient tumors.

From a genomic perspective, it will be necessary to
understand the clonal composition and progression of
tumors to develop effective genotype-matched therapy.
As clonal selection and progression would have occurred
that led to the development of clinically detectable re-
current or metastatic disease, actual clonal composition
of advanced HNSCC could be different from that of pri-
mary tumors and arguably might contain more genetic
driver events that are actionable. Accurate charting of
clonal and sub-clonal genetic events in recurrent and
metastatic HNSCC based on absolute quantification of
somatic mutation events will be critical in finding the rele-
vant therapeutic targets in individual tumors [91, 92]. It is
plausible that some genetic alterations are present only in
minor sub-clones and targeting those might not produce
meaningful clinical benefits.

Considering different biological pathways are active in
different subtypes of HNSCC, single agent activity of tar-
geted agents in non-selected population is likely to be
modest. To significantly improve clinical outcomes, ra-
tional combination treatment strategies should be tested
prospectively in selected populations enriched by unique
tumor molecular features present in the recurrent or
metastatic tumors. Currently, based on available gen-
omic data mainly derived from early stage tumors, the
proportion of HNSCC patients who could benefit from
personalized therapy remains relatively small considering
the most common genetic events in HNSCC occur in
tumor suppressor genes. However, concerted large scale
genomic profiling programs such as SPECTA (Screening
Patients for Efficient Clinical Trial Access) of EORTC
(European Organization for Research and Treatment of
Cancer) that aims to profile advanced solid tumors to offer
genotype-matched therapies could more accurately inform
targetable genetic events in recurrent/metastatic HNSCC.
These initiatives may also shed insight on the proportion
of patients who truly benefit from personalized treatment
strategies with acceptable toxicity profiles.
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Beyond targeted therapy, ICI are now emerging as a
promising new therapy in HNSCC. The genomic predic-
tors of response to ICI clearly exist in other cancer types
[67, 93] and it would be prudent to identify genomic
and immune mechanisms that underlie tumor immune
escape and ICI resistance in HNSCC. As future thera-
peutic opportunities arise with advances in our under-
standing of HNSCC biology, there will also be new
challenges of translating these advances to personalized
therapies. The vision for precision medicine in HNSCC
requires concerted interest and continuous effort in the
conduct of innovative but complex biomarker directed
multidisciplinary trials.

Conclusion

New treatment paradigms for patients with HNSCC are
currently evolving. At present the two main subtypes of
HNSCC classified by HPV status remains the most clinic-
ally relevant. Development of personalized therapy in
HNSCC is still in early stage and results from ongoing
preclinical and clinical studies will provide further insight
into future novel therapeutic strategies. It is, however,
critical that future studies select appropriate patients
for potential matched therapies based on sound bio-
logical rationale to realize precision medicine in head
and neck cancer.
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